Сверхсильное световое поле

Амплитуда напряжённости электрического поля волны:

$$I = \frac{\langle dW \rangle}{dSdt} = \langle w \rangle c = \frac{c\varepsilon_0 E_0^2}{2} \Rightarrow E_0 = \sqrt{\frac{2I}{c\varepsilon_0}} = 27, 5\sqrt{I\left[\frac{Bm}{M^2}\right]}$$

$$E_a = \frac{1}{4\pi\varepsilon_0} \frac{e}{r_b^2} = \frac{9 \cdot 10^9 \cdot 1, 6 \cdot 10^{-19}}{0,53^2 \cdot 10^{-20}} \frac{B}{M} = 5, 1 \cdot 10^{11} \frac{B}{M} \approx 50 B / \text{Å}$$

$$P = \varepsilon_0 \chi^{(1)} \vec{E} + \varepsilon_0 \chi^{(2)} \vec{E} \vec{E} + \varepsilon_0 \chi^{(3)} \vec{E} \vec{E} \vec{E} + \dots = \vec{P}^{(n)} + \vec{P}^{(nn)}$$

Практика получения сверхсильного светового поля

Чтобы получать **сверхсильные световые поля**, нужно сокращать **длительность импульса** и/или уменьшать **площадь пятна**, в которое фокусируется излучение.

$$I = \frac{\left\langle dW \right\rangle}{dSdt}$$

При $\tau \sim 30$ фс и небольшой энергии (1,5 Дж) пиковая мощность ~50 ТВт При фокусировке в пятно 1 мкм получим: $I \approx 5 \cdot 10^{25} \frac{Bm}{M^2}$

G.A. Mourou et al . Generation and characterization of the highest laser intensities (10²² W/cm²), Opt.Lett . 29, 2837, 2004.

Релятивистская интенсивность

$$\begin{cases} I = c\varepsilon_0 E_0^2/2\\ a = \frac{eE_0}{m}\cos\omega t \Rightarrow \\ \langle W_{\rm KMH} \rangle = mc^2 \end{cases} \begin{cases} V = \frac{eE_0}{m\omega}\sin\omega t\\ W_{\rm KMH} \rangle = \frac{e^2I\lambda^2}{4\pi^2mc^3\varepsilon_0} \Rightarrow I_{rel} = \frac{4\pi^2\varepsilon_0m^2c^5}{e^2\lambda^2} \approx 1.4 \cdot 10^{22}\frac{1}{\lambda[\rm MKM]^2}\frac{\rm BT}{\rm M^2} \end{cases}$$

Современные технологии получения мощных лазерных импульсов

Протонная терапия раковых заболеваний

Протонная терапия - 1946г.

R. R. Wilson, "Radiological use of fast protons," Radiology 47, 487–491,1946

Благодаря наличию Брэгговского пика, протонные пучки гораздо предпочтительнее для лечения опухолей, чем фотоны (рентген) и электроны

Первый пациент был вылечен протонными пучками в 1954 г.

За 50 лет в мире вылечено около 40 тысяч пациентов

Почему так мало?!

Обычные ускорители частиц + инфраструктура > 10⁸ \$

Генерация быстрых протонов

S.J. Gitomer et al., Phys. Fluids **29**, 2679 (1986)

Перспективы применения быстрых протонов, сгенерированных лазерным излучением

- ✓ Протонная радиография высокого разрешения, диагностика плазмы
- ✓ Инжекторы для ускорителей
- ✓ Компактные ускорители протонов для терапии раковых заболеваний
- ✓ Наработка изотопов для Позитронно-Эмиссионной Томографии (ПЭТ)

Лазерные системы для протонной терапии раковых заболеваний

Плюсы	Минусы
Минимум вреда при лечении	Малая энергия протонов
Разрешение 1 мм	Малый ток протонов
Компактность (на 10 мкм протоны приобретают энергию в ~10 МэВ)	
Простая транспортировка протонов	
Дешёвые	
Минимум инфраструктуры	

Требования к пучку протонов	Существующие характеристики
Энергия до 300 МэВ (глубина проникновения до 30 см)	10-60 МэВ (глубина проникновения до 2 см – хватает для терапии глаз)
Мощность ~10 ¹⁰ протонов/с	< 10 ⁹ протонов/с
Монохроматичность $\Delta E/E \sim 10^{-2}$	10-2

Наработка изотопов для Позитронно-Эмиссионной Томографии

ПЭТ основана на регистрации пары гамма-квантов, возникающих при аннигиляции **позитронов с электронами**. Позитроны возникают при β-распаде **радионуклида** в составе препарата (~фтордезоксиглюкоза), который вводится в организм перед исследованием.

¹⁸F-фтордезоксиглюкоза $(p + {}^{18}O \rightarrow {}^{18}F + n)$

В основном применяются изотопы элементов второго периода:

¹⁸**F** имеет достаточно малый период, чтобы дозовая нагрузка была приемлема. С другой стороны, период достаточно большой для транспортировки препарата в клинику

Изотоп	Т _{1/2} , мин
¹¹ C	20,4
¹³ N	9,96
¹⁵ O	2,03
¹⁸ F	109,8

100-500	смерть через неделю
10	КТ живота или таза
10	развитие лучевой болезни
8	начало изменений состава крови
3	при рентгеноскопии желудка
1	аварийное облучение населения
~ 0,1	перелёт Москва-Стамбул-Москва
~ 0.02	рентген лёгких

За счёт использования ионизирующего излучения однократное использование 18F-ФДГ в среднем даёт дозу облучения 14 мЗв.

Как правило, системы ПЭТ совмещают с устройствами КТ.

Генерация коротковолнового излучения

1. Высокое временное и

пространственное разрешение: малые длина волны и длительность импульсов

2. Некогерентное излучение – тормозное излучение, как в рентгеновской трубке (не направлено, $\tau \sim пс$)

3. Когерентное излучение – гармоники от поверхности плазмы (направлено, $\tau \sim ac$)

4. Монохроматические пучки (Δ*E* ~ кэВ)

Приложения: рентгеновская дифракция, спектроскопия, микроскопия с фс- временным и нмпространственным разрешениями.

Альтернативы:

- ✓ синхротрон,
- ✓ лазер на свободных электронах,
- ✓ рентгеновский лазер

Источники синхротронного излучения

Синхротронное излучение

(магнитотормозное излучение релятивистских заряженных частиц в магнитом поле)

Поколения источников синхротронного излучения

1 поколение. Коллайдеры, циклические ускорители, работающие при неизменной энергии электронов в постоянных магнитных полях. СИ считается паразитным – мешает разгонять частицы.

2 поколение. Комплексы, оптимизированные для получения СИ.

3 поколение. Комплексы с намного большим периметром кольца и малой мощностью СИ из поворотных магнитов. Главные источники СИ – ондуляторы на длинных прямолинейных участках.

Ондулятор

ондуляторное излучение

Ондулятор

Photon energy (eV)

 $K = \frac{eB_0\lambda_u}{2\pi m_0 c}$

Professor David Attwood Univ. California, Berkeley

Ондулятор

Professor David Attwood Univ. California, Berkeley

Лазеры на свободных электронах

Группировка электронов в микробанчи

Электрон движется в поле собственной волны, но отстаёт от неё каждые полпериода ондулятора на $\lambda/2$

Сравнение синхротрона, ондулятора и ЛСЭ

 $N_f \sim (N_e N)^2$

Переход от ондулятора к ЛСЭ

Z, O.e.

Спектральная яркость источников СИ

XFEL

 $\lambda = 0,05 - 6$ нм $\tau \approx 100 \, \varphi c$ $f \approx 27 \, \kappa \Gamma \mu$

Дифракция Брэгга (XRD – X-Ray refraction)

Дифракция (рассеяние) рентгеновского пучка – возникновение вторичных отклонённых пучков той же длины волны в результате взаимодействия первичного пучка с электронами вещества.

- ✓ Неинвазивная диагностика
- ✓ Высокое пространственное разрешение
- ✓ Необходима кристаллическая решётка

Трехмерные структуры белковых молекул

Дифракция Лауэ

В дифракции Лауэ рентгеновский пучок не монохроматичен, но угол падения не варьируется.

При этом условия интерференции для разных кристаллографических осей выполняются на разных длинах волн. Это приводит к появлению ярких точек на фотопластинах.

