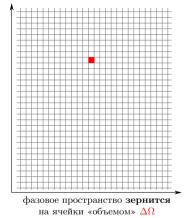
Лекция 11 Второе начало термодинамики

Зернение фазового пространства



• Предположим, мы зафиксировали начальное состояние системы X_0 с абсолютной точностью. Тогда PDF равна

$$w(X) = \delta(X - X_0)$$

Не пытайтесь энтропию такого состояния

• Введем зернение фазового пространства: некую точность, с которой мы фиксируем состояние X. Тогда максимально локализованное состояние задается δ -подобной PDF:

$$w(X) = \begin{cases} 1/\Delta\Omega, & X \text{«в ячейке»} \\ 0, & X \text{«вне ячейки»} \end{cases}$$

• Его энтропия, минимальная из допустимых, равна

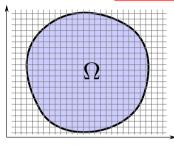
$$S_{\min} = -k \int_{\Delta\Omega} \frac{dX}{\Delta\Omega} \ln \frac{1}{\Delta\Omega} = k \ln \Delta\Omega$$

• Сдвинем начало отсчета энтропии, чтобы $S_{\min} \to 0$:

$$S = -k \int_{-\infty}^{\infty} w_X \ln w_X dX - S_{\min} = -k \int_{-\infty}^{\infty} w_X \ln(w_X \Delta \Omega) dX \equiv -k \left\langle \ln \left(w \Delta \Omega \right) \right\rangle$$

Неопределенность Гейзенберга

Нельзя абсолютно точно одновременно зафиксировать значения всех канонических переменных X



- Квантовая **неопределенность Гейзенберга** диктует минимальное зернение для системы точечных частиц: $\Delta\Omega = h^{3N}$, где $h = 6.6 \cdot 10^{-34}$ Дж·с постоянная Планка.
- В квантовой физике частицы неразличимы, их перестановка не добавлает беспорядка. В итоге, число различных микросостояний в области Ω может быть оценено, как

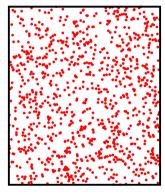
$$W_{\Omega} = \frac{1}{N!} \int_{\Omega} \frac{dX}{h^{3N}}$$

• Скорректируем определения энтропии в соответствии с этими замечаниями:

множитель N! позволяет корректно вычислять зависимость энтропии от числа частиц

Энтропия идеального газа

$$S = \left\langle -k \ln \left(w h^{3N} N! \right) \right\rangle$$



 \bullet Просто газ в сосуде объемом V, без потенциальной энергии:

$$w(X) = \frac{1}{Z} \prod_{i=1}^{N} \exp\left(-\frac{|\mathbf{p}_i|^2}{2mkT}\right) \implies \ln w = -\ln Z - \sum_{i=1}^{N} \frac{|\mathbf{p}_i|^2}{2mkT}$$

 \bullet Средний логарифм w вычисляется элементарно:

$$\langle -k \ln w \rangle = k(\ln Z + 1.5N)$$

- Грубо оценим $N! \sim (N/e)^N$. Тогда поправка к S равна $-k \left\langle \ln \left(h^{3N} N! \right) \right\rangle \approx -k N (\ln N + 3 \ln h 1)$

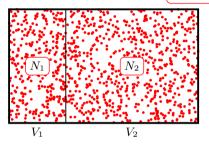
• Соберем все вместе:

$$S = kN\left(\frac{3}{2}\ln T + \ln V - \ln N\right) + Ns_0$$

Мы получили знакомую формулу для энтропии, но с дополнительным учетом зависимости от N

«Объяснение» парадокса Гиббса

$$S = kN (1.5 \ln T + \ln V - \ln N) + Ns_0$$



Теплоизолированный сосуд разделен на две части.

В каждой части находится **один и тот же газ**, причем концентрации $N_1/V_1=N_2/V_2\equiv n$. Перегородку убирают. Изменится ли энтропия?

1) объем каждой порции возрастет, а значит

$$\Delta S_1=kN_1\ln\left(1+rac{V_2}{V_1}
ight)$$
 и $\Delta S_2=kN_2\ln\left(1+rac{V_1}{V_2}
ight)$ но, как мы знаем, это неправильно

2) Вычислим энтропии каждой порции $\mathbf{ДO}$, а затем всей системы $\mathbf{\Pi OCJE}$

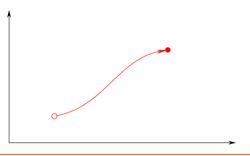
$$S_1 = kN_1 (1.5 \ln T - \ln n) + N_1 s_0$$

$$S_2 = kN_2 (1.5 \ln T - \ln n) + N_2 s_0$$

$$S_{1+2} = k(N_1 + N_2) (1.5 \ln T - \ln n) + (N_1 + N_2) s_0 = S_1 + S_2$$

ура, мы построили энтропию со свойством аддитивности но настоящие проблемы начинаются с определением «различимости» газов

пусть начальное состояние системы известно абсолютно точно



развитие системы абсолютно предсказуемо:

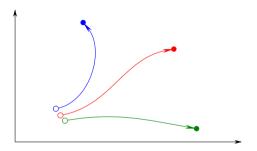
$$w(X, t = 0) = \delta(X - X_0) \quad \Rightarrow \quad w(X, t) = \delta(X - X_s(t))$$

где $X_s(t)$ — решение ур-й Гамильтона с нач. усл. $X_s(0)=X_0$

этот факт более чем очевиден,

но и уравнение Лиувилля dw/dt=0 даёт тот же результат

пусть начальное состояние системы равновероятно выбирается из набора W абсолютно точно известных состояний

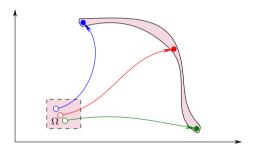


начальная неопределенность сохраняется:

каждый «вариант» развивается абсолютно предсказуемо, в любой момент времени система равновероятно находится в W различных состояниях

энтропия $S = k \ln W$ не увеличивается со временем

пусть начальное состояние системы равновероятно распределено в области Ω

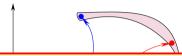


занятый фазовый объем сохраняется:

начальная
$$w(X,t=0) = \begin{cases} 1/\mathrm{Vol}[\Omega], \ X \in \Omega \\ 0, \ X \notin \Omega \end{cases}$$

эти значения сохраняются вдоль траекторий в фазовом пространстве, область Ω деформируется, но не растет! $S=k\ln {
m Vol}[\Omega]={
m const}$

пусть начальное состояние системы равновероятно распределено в области Ω



микроканоническое распределение тоже не сможет установиться

если система равновероятно занимала только *часть* состояний с энергией E_0 , она не сможет занять *все* такие состояния

начальная
$$w(X,t=0) = \begin{cases} 1/\mathrm{Vol}[\Omega], \ X \in \Omega \\ 0, \ X \notin \Omega \end{cases}$$

эти значения сохраняются вдоль траекторий в фазовом пространстве, область Ω деформируется, но не растет! $S=k\ln {\rm Vol}[\Omega]={\rm const}$

а возрастает ли энтропия вообще?

• Энтропия Гиббса
$$S=-k\left\langle \ln w \right\rangle =-k\int\underbrace{\left(w\ln w\right)}_{\equiv f(w)}dX$$
, просто вычислим dS/dt :

$$\frac{dS}{dt} = -k\frac{d}{dt}\int f(w)dX = -k\int \frac{df}{dw}\left(\frac{\partial w}{\partial t}\right)_X dX, \quad \text{ только по явному } t!$$

• Из уравнения Лиувилля $\frac{dw}{dt} = 0$ получаем $\left(\frac{\partial w}{\partial t}\right)_X = -\sum_{i=1}^N \left(\frac{\partial w}{\partial \mathbf{p}_i} \cdot \frac{\partial \mathcal{H}}{\partial \mathbf{q}_i} - \frac{\partial w}{\partial \mathbf{q}_i} \cdot \frac{\partial \mathcal{H}}{\partial \mathbf{p}_i}\right)$

$$\frac{df}{dw} \sum_{i=1}^{N} \left(\frac{\partial w}{\partial \mathbf{p}_{i}} \cdot \frac{\partial \mathcal{H}}{\partial \mathbf{q}_{i}} - \frac{\partial w}{\partial \mathbf{q}_{i}} \cdot \frac{\partial \mathcal{H}}{\partial \mathbf{p}_{i}} \right) = \sum_{i=1}^{N} \left(\frac{\partial f}{\partial \mathbf{p}_{i}} \cdot \frac{\partial \mathcal{H}}{\partial \mathbf{q}_{i}} - \frac{\partial f}{\partial \mathbf{q}_{i}} \cdot \frac{\partial \mathcal{H}}{\partial \mathbf{p}_{i}} \right)$$

• Рассмотрим, например,
$$\int \frac{\partial f}{\partial p_{1x}} \frac{\partial \mathcal{H}}{\partial q_{1x}} dX = \int d\{X \setminus p_{1x}, q_{1x}\} \int_{-\infty}^{\infty} \frac{\partial f}{\partial p_{1x}} dp_{1x} \int_{-\infty}^{\infty} \frac{\partial \mathcal{H}}{\partial q_{1x}} dq_{1x} = 0$$

похоже, что нет!

-0

«Недостижимый» максимум

ЗАДАЧА: найти w(X), удовлетворяющую условию нормировки $\langle 1 \rangle = 1$, при известных значениях средней внутренней энергии $\langle \mathcal{H} \rangle = U$ и м.б. других флуктуирующих внутренних параметров $\left< \tilde{\Lambda}_n \right> = \Lambda_n$, максимизирующую энтропию Гиббса $S = -k \langle \ln w \rangle$

Метод Лагранжа с множителями $k\alpha$, $-k\beta_0$, $-k\beta_n$:

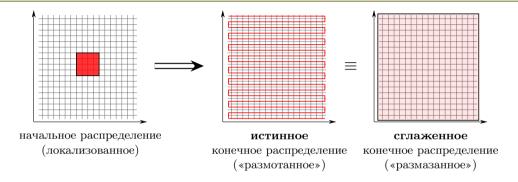
$$\mathcal{F} = -k \int w \ln w dX - k\alpha \left(\int w dX - 1 \right) - k\beta_0 \left(\int w \mathcal{H} dX - U \right) - k \sum_n \beta_n \left(\int w \tilde{\Lambda}_n dX - \Lambda_n \right)$$

$$\frac{\delta \mathcal{F}}{\delta w} = -k(1 + \ln w) - k\alpha - k\beta_0 \mathcal{H}(X) - k \sum_n \beta_n \tilde{\Lambda}_n(X) = 0$$

$$\ln w(X) = -(1 + \alpha) - \beta_0 \mathcal{H}(X) - \sum \beta_n \tilde{\Lambda}_n(X) \quad \Rightarrow \quad w(X) \sim \exp\left(-\beta_0 \mathcal{H}(X) - \sum \beta_n \tilde{\Lambda}_n(X) \right)$$

канонические распределения Гиббса максимизируют энтропию но как же они достигаются?

Истинные и сглаженные распределения



- фазовый объем не растёт, но «разматывается» на все фазовое пространство
- с учетом сглаживания, все похоже на «расплывание» начального распределения
- $w_{\text{ист}}(X) \neq w_{\text{сглаж}}(X)$, но все средние значения, посчитанные по этим распределениям, с высокой точностью совпадут
- $w_{\text{сглаж}}(X)$ будет совпадать со стационарным решением уравнения Лиувилля. Распределение Гиббса, в этом смысле, установится, а энтропия увеличится!