Лекция 6 Введение в статфизику

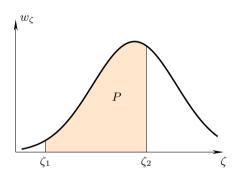
Статистическая физика

раздел физики, посвященный описанию и предсказанию свойств макроскопических систем ${\bf c}$ большим числом частиц

рассматривает микроскопические параметры частиц системы, полагая их **случайными величинами**

является наукой **теоретической** восходит от абстрактного к конкретному

«случайность» величины ζ мы будем понимать интуитивно



$$P(\zeta \in [\zeta_1; \zeta_2]) = \int_{\zeta_1}^{\zeta_2} w(\zeta) d\zeta$$

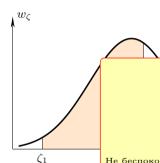
- Случайная величина принимает разные значения от измерения к измерению
- $w(\zeta)$ или w_{ζ} ф-ция плотности вероятности (PDF). Помимо нахождения вероятностей, ее еще используют для определения средних значений (матожиданий):

$$\mathrm{E}[f(\zeta)] \equiv \langle f(\zeta) \rangle = \int\limits_{-\infty}^{\infty} f(\zeta) w_{\zeta} d\zeta$$

• Два важных частных случая:

среднее:
$$\langle \zeta \rangle = \int\limits_{-\infty}^{\infty} \zeta w_{\zeta} d\zeta$$
 дисперсия: $\sigma_{\zeta}^{2} = \langle (\zeta - \langle \zeta \rangle)^{2} \rangle = \langle \zeta^{2} \rangle - \langle \zeta \rangle^{2} > 0$

«случайность» величины ζ мы будем понимать интуитивно



 Случайная величина принимает разные значения от измерения к измерению

> еще используют атожиданий):

• w(с) или w. — ф инд плотности вороятности (PDF).

и не забудь про нормировку!

$$\langle 1 \rangle = \int_{-\infty}^{\infty} w_{\zeta} d\zeta = 1$$

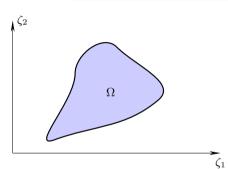
Не беспокойся, куда-нибудь ты обязательно попадешь, — сказал Кот

$$P(\zeta \in [\zeta_1; \zeta_2]) = \int_{\zeta_1}^{\zeta_2} w(\zeta) d\zeta$$

среднее:
$$\langle \zeta \rangle = \int \zeta w_\zeta d\zeta$$

дисперсия:
$$\sigma_{\zeta}^2 = \left< (\zeta - \left< \zeta \right>)^2 \right> = \left< \zeta^2 \right> - \left< \zeta \right>^2 > 0$$

с наборами случайных величин $X=(\zeta_1,...,\zeta_N)$ мы работаем аналогично



$$P(X \in \Omega) = \int_{\Omega} w(X)dX$$

не «объем» Ω !!!

• w(X) или w_X — многомерная PDF

• Можно исключить из рассмотрения одну из величин Для этого w(X) надо проинтерировать по ней:

$$w(\zeta_1,\zeta_2)=\int\limits_{-\infty}^{\infty}w(\zeta_1,\zeta_2,\zeta_3)d\zeta_3$$
 маргинальна: плотность

• Средние считаются аналогично:

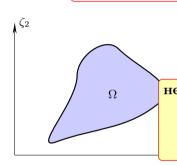
$$\langle f(X) \rangle = \int_{\mathbb{D}^N} f(X) w_X dX$$

• Вместо дисперсий — ковариационная матрица:

$$K_{ij} = K_{ji} = \langle \zeta_i \zeta_j \rangle - \langle \zeta_i \rangle \langle \zeta_j \rangle$$

$$w_X = \prod_{i=1}^N w(\zeta_i)$$

с наборами случайных величин $X=(\zeta_1,...,\zeta_N)$ мы работаем аналогично



- w(X) или w_X многомерная PDF
- ullet Можно исключить из рассмотрения одну из величин Для этого w(X) надо проинтерировать по ней:

не забываем про нормировку! $d\zeta_3$

$$\langle 1 \rangle = \int w_X dX = 1$$

маргинальная плотность

ично:

√1 • Вместо дисперсий — ковариационная матрица:

$$K_{ij} = K_{ji} = \langle \zeta_i \zeta_j \rangle - \langle \zeta_i \rangle \langle \zeta_j \rangle$$

ullet Если величины из X статистически независимы, то K_{ij} — диагональная матрица, а w(X) факторизуется:

$$w_X = \prod_{i=1}^N w(\zeta_i)$$

Примеры случайных физических величин

РАСПРЕДЕЛЕНИЕ МАКСВЕЛЛА (1860)

Проекции скорости частицы, взятые в разные моменты времени или у случайно выбранной частицы

$$w(v_x, v_y, v_z) = \frac{1}{Z_K} \exp\left(-\frac{m(v_x^2 + v_y^2 + v_z^2)}{2kT}\right)$$

РАСПРЕДЕЛЕНИЕ БОЛЬЦМАНА (1870)

Координаты частицы, взятые в разные моменты времени или у случайно выбранной частицы

$$w(x,y,z)=rac{1}{Z_\Pi}\exp\left(-rac{\Pi(x,y,z)}{kT}
ight)$$
, где $\Pi(x,y,z)$ — потенциальная энергия

КАНОНИЧЕСКОЕ РАСПРЕДЕЛЕНИЕ ГИББСА (1902)

Набор всех обобщенных координат и импульсов $X = (\mathbf{q}..., \mathbf{p}...)$ всех частиц в куске вещества

$$w(X) = \frac{1}{Z} \exp\left(-\frac{\mathcal{H}(X)}{kT}\right)$$
, где $\mathcal{H}(X)$ — гамильтониан (что??)

Распределение Максвелла

технически, это тройной Гаусс

$$w(\mathbf{v}) = \left(\frac{m}{2\pi kT}\right)^{3/2} \exp\left(-\frac{m(v_x^2 + v_y^2 + v_z^2)}{2kT}\right)$$

• Все компоненты скорости распределены одинаково и независимо:

$$w(\mathbf{v}) = w(v_x)w(v_y)w(v_z)$$

$$w(v_i) = \mathcal{N}(0, \sigma^2)$$
, где $\sigma^2 = kT/m$. В частности $\langle v_i^2 \rangle = kT/m$

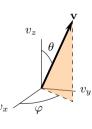
• Очень просится переход от декартовых проекций к «модуль-направлению»:

$$\mathbf{v} = v(\sin\theta\cos\varphi, \sin\theta\sin\varphi, \cos\theta)$$

Вероятность неизменна: $w(v_x, v_y, v_z)|dv_x dv_y dv_z| = w(v, \theta, \varphi)|dv d\theta d\varphi|$, поэтому

$$w(v,\theta,\varphi) = w(v_x, v_y, v_z) \left| \frac{\partial (v_x, v_y, v_z)}{\partial (v,\theta,\varphi)} \right| = \frac{v^2 \sin \theta}{(2\pi\sigma^2)^{3/2}} \exp\left(-\frac{v^2}{2\sigma^2}\right)$$

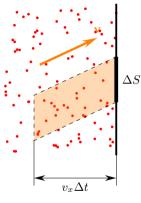
Проинтегрируем по углам:
$$w(v) = \int_{\infty}^{\pi} \int_{2}^{2\pi} w_{v\theta\varphi} d\theta d\varphi = \sqrt{\frac{2}{\pi}} \frac{v^2}{\sigma^3} \exp\left(-\frac{v^2}{2\sigma^2}\right)$$



Распределение Максвелла



Давление идеального газа



Рассмотрим площадку ΔS на стенке сосуда с газом внутри. Рассмотрим молекулы со скоростью $\mathbf{v}=(v_x,v_y,v_z)$. Из них за время Δt до стенки долетят молекулы, находящиеся в подсвеченном объеме $\Delta V=v_x\Delta t\Delta S$

Их число $dN_{\mathbf{v}}=n\Delta Vw(\mathbf{v})dv_xdv_ydv_z$, где n — концентрация. все молекулы imes доля со скоростью \mathbf{v}

При столкновении x-импульс меняется с mv_x на $-mv_x$. Импульс, переданный этими молекулами, равен $2mv_x \cdot dN_v$:

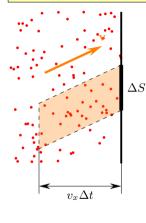
$$dp_{x,\mathbf{v}} = 2nm\Delta S\Delta t \cdot v_x^2 w(\mathbf{v}) dv_x dv_y dv_z$$

Полный переданный импульс найдем, проинтегрировав по v_y и v_z от $-\infty$ до ∞ и по v_x от 0 до ∞ .

Поскольку $w(\mathbf{v}) = w(v_x)w(v_y)w(v_z)$, интеграл распадается на произведение трех, причем интегралы по v_y и v_z дают 1 (нормировка). В итоге, учитывая четность $w(v_x)$

$$\Delta p_x = 2nm\Delta S\Delta t\int\limits_0^\infty v_x^2 w(v_x)dv_x = nm\Delta S\Delta t\left\langle v_x^2 \right
angle \quad \Rightarrow \quad \boxed{ \mathbf{p} = rac{\Delta p_x}{\Delta t\Delta S} = nm\left\langle v_x^2 \right
angle = nkT} }$$
 уравнение состояния идеального газа

Статистика истечения из отверстия



Пусть теперь газ истекает из отверстия площадью ΔS . Число вылетевших молекул со скоростью ${f v}$:

$$dN_{\mathbf{v}} = n\Delta S v_x \Delta t \cdot w(\mathbf{v}) dv_x dv_y dv_z$$

Найдем полное число вылетающих молекул интегрированием по v_y и v_z от $-\infty$ до ∞ и по v_x от 0 до ∞ :

$$\Delta N = n\Delta S \Delta t \int_{0}^{\infty} v_x w(v_x) dv_x = n\Delta S \Delta t \frac{\sigma}{\sqrt{2\pi}} = n\Delta S \Delta t \frac{\langle v \rangle}{4}$$

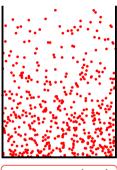
Это нормировочная константа для вылетающих молекул:

$$w_{\text{out}}(\mathbf{v}) = \frac{dN_{\mathbf{v}}}{\Delta N \cdot dv_x dv_y dv_z} = \sqrt{2\pi} \frac{v_x}{\sigma} w(\mathbf{v})$$

Перейдем к языку «модуль-направление», но угол θ будем отсчитывать от оси Ox:

$$w_{\rm out}(v,\theta,\varphi) = v^2 \sin\theta \cdot w_{\rm out}(\mathbf{v}) = \frac{\sin 2\theta}{4\pi} \frac{v^3}{\sigma^4} \exp\left(-\frac{v^2}{2\sigma^2}\right) \quad \Rightarrow \quad \boxed{w_{\rm out}(v) = \frac{v^3}{2\sigma^4} \exp\left(-\frac{v^2}{2\sigma^2}\right)}$$

Простейшее распределение Больцмана



$$\left[w(z) = \frac{1}{z_0} \exp\left(-\frac{z}{z_0}\right)\right]$$

Рассмотрим газ в прямом стакане «без крышки».

Потенциальная энергия молекулы газа в поле тяжести $\Pi(z) = mgz$. Соответственно, распределение для координат (x,y,z) имеет вид

$$w(x,y,z)=rac{1}{Z_\Pi}\exp\left(-rac{mgz}{kT}
ight)\equivrac{1}{Z_\Pi}\exp\left(-rac{z}{z_0}
ight)$$
, где $z_0=rac{kT}{mg}$

Координаты x и y распределены равномерно, интеграл по ним дает умножение на площадь стакана S:

$$w(z)=rac{S}{Z_\Pi}\exp{\left(-rac{z}{z_0}
ight)},$$
 причем $1=\int\limits_0^\infty w(z)dz=rac{z_0S}{Z_\Pi}$

Среднее значение: $\langle z \rangle = z_0$, дисперсия: $\sigma_z^2 = z_0^2$.

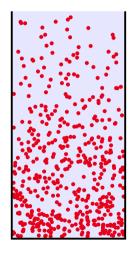
Если в сосуде всего N частиц, то в маленьком объеме ΔV находится $\Delta N = Nw(x,y,z)\Delta V$.

Следовательно, локальная концентрация $n(x,y,z)=\frac{\Delta N}{\Delta V}=Nw(x,y,z).$

Концентрация экспоненциально убывает с высотой, если считать $T=\mathrm{const.}$

При этом р $\sim n$ и также экспоненциально убывает с высотой (барометрическая формула).

Измерение постоянной Больцмана



Опыты Перрена (1908, нобелевская премия в 1926)

• Частицы со средним диаметром d и плотностью ρ взвешены в жидкости с чуть меньшей плотностью ρ_0 . На частицы действует не только сила тяжести, но и сила Архимеда:

$$ma_z = mg - \rho_0 gV \quad \Rightarrow \quad a_z = g\left(1 - \frac{\rho_0}{\rho}\right)$$

• Частицы во много раз тяжелее молекул, но за счет силы Архимеда создаются условия практически нулевой плавучести, в которых уже проявляется статистика Больцмана:

$$n(x, y, z) \sim w(x, y, z) \sim \exp\left(-\frac{ma_z z}{kT}\right)$$

 \bullet Измерям зависимость n(z), линеаризуем и находим к-т наклона:

$$\ln n(z) = -rac{ma_z}{kT}z + {
m const}, \; {
m ec}$$
ли $lpha \equiv rac{ma_z}{kT}, \; {
m to} \; k = rac{ma_z}{lpha T}$

описанный эксперимент является частью опытов Перрена, в которых k определялась из анализа броуновского движения