Лекция 7 Уравнение Лиувилля

Элементы гамильтоновой механики

- ullet Состояние механической системы из большого числа частиц N описывается набором обобщенных координат ${f q}_{1...N}$ и обобщенных импульсов ${f p}_{1...N}$.
- Для точечных частиц \mathbf{p} обычный импульс $m\mathbf{v}$, а \mathbf{q} обычный радиус-вектор \mathbf{r} . Для более сложных случаев \mathbf{p} и \mathbf{q} не столь очевидны, а их размерность может быть больше 3, например для учета вращений и колебаний.
- Необходимо знать, как вычисляется функция Гамильтона (гамильтониан, \mathcal{H}) Это числовая функция от $\mathbf{q}_{1...N}$, $\mathbf{p}_{1...N}$ и времени t, имеет смысл энергии системы.

Динамику системы описывают \mathbf{y} равнения Гамильтона $\begin{cases} \frac{d\mathbf{q}_i}{dt} = \frac{\partial \mathcal{H}}{\partial \mathbf{p}_i} \\ \frac{d\mathbf{p}_i}{dt} = -\frac{\partial \mathcal{H}}{\partial \mathbf{q}_i} \end{cases}$

пример

$$\mathcal{H} = \sum_{i=1}^{N} \left(\frac{|\mathbf{p}_i|^2}{2m} + mgz_i \right)$$

Это точечные невозаимодействующие частицы в поле гравитации

$$\frac{d\mathbf{q}_i}{dt} = \frac{\mathbf{p}_i}{m}$$
 и $\frac{d\mathbf{p}_i}{dt} = -mg\mathbf{e}_z$

получилась связь импульса и скорости и уравнение свободного падения

Детерминизм и случайность

Система из N частиц «стартует» из начального состояния $X_0 = (\mathbf{q}_{1...N}^{(0)}, \mathbf{p}_{1...N}^{(0)})$. Является ли ее дальнейшее развитие случайным?

Ответ математика

Нет, конечно! Ваши уравнения Гамильтона являются системой ДУ первого порядка, имеют единственное решение при заданных начальных условиях.

Возражение физика

Но спустя некоторое время движение частиц выглядит беспорядочным, даже если вначале они двигались упорядоченно!

Пояснение математика

Не всегда. Если частицам ничто не мешает, они будут лететь по прямой. Все происходит из-за взаимодействий частиц со стенками сосуда и между собой. Они вносят кажущуюся непредсказуемость в динамику системы. Плюс ко всему малое изменение начальных условий вызывает большие отклонения в решении уравнений. Это называется динамический хаос.

Хорошо. Можно ли считать развитие системы случайным?

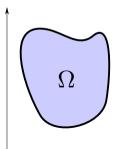
Случаен ли бросок монетки?

Rosencrantz & Guildenstern Are Dead / Tom Stoppard

Фазовое пространство

А бросок монетки можно считать случайным?

- Если учесть все-все-все, что только можно, тогда падение монетки предсказывается точно.
- То же самое можно сказать про термодинамические системы. Однако, точно зафиксировать $\sim 10^{23}$ начальных условий и решать $\sim 10^{23}$ уравнений на практике невозможно, да и не нужно.
- Вместо этого мы изначально будем говорить о *вероятности* наблюдать систему близко к тому или иному состоянию $X = (\mathbf{q}_{1...N}, \mathbf{p}_{1...N})$. Для этого используется PDF w(X,t). Совокупность всех возможных значений X называется фазовым пространством.



Вероятность системы быть в каком-то состоянии из подмножества Ω вычисляется стандартно:

$$P(X \in \Omega) = \int\limits_{\Omega} w(X,t) dX, \, P$$
 может зависеть от $t.$

С помощью w(X,t) можно вычислять средние характеристики всей системы (макропараметры):

$$\langle f \rangle = \int f(X) w(X,t) dX, \, \langle f \rangle$$
 может зависеть от $t.$

Фазовое пространство

А бросок монетки можно считать случайным?

- Если учесть все-все, что только можно, тогда падение монетки предсказывается точно.
- То же самое можно сказать про термодинамические системы. Однако, точно зафиксировать $\sim 10^{23}$ начальных условий и решать $\sim 10^{23}$ уравнений на практике невозможно, да и не нужно.
- Вместо этого мы изначально будем говорить о вероятности наблюдать систему близко к тому или иному состоянию $X=(\mathbf{q}_{1...N},\mathbf{p}_{1...N})$. Для этого используется PDF w(X,t).

Совокупность всех возможных значений X называется фазовым пространством.

Нам необходимо уравнение, описывающее поведение w(X,t)

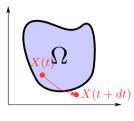
подмноже-

$$P(X \in \mathcal{U}) = \int\limits_{\Omega} w(X, t) dX, P$$
 может зависеть от t .

С помощью w(X,t) можно вычислять средние характеристики всей системы (макропараметры):

$$\langle f \rangle = \int f(X) w(X,t) dX, \, \langle f \rangle$$
 может зависеть от $t.$

Уравнение Лиувилля



- ullet Вывод уравнения Лиувилля для w(X,t) основывается на наблюдении за вероятностью того, что состояние системы будет X принадлежать к группе состояний $\Omega.$
- ullet Представим себе большое число реализаций нашей случайной системы (статистический ансамбль). В момент времени t каждая из них отображается точкой в фазовом пространстве, а «плотность облака» этих точек соответствует значениям w(X,t).
- Вероятность $P(X \in \Omega)$ меняется, потому что меняется состояние каждой системы в ансамбле, и точки X входят и выходят из области Ω . Эволюцию каждой системы в фазовом пространстве показывает «вектор скорости» dX/dt, причем

$$\frac{dX}{dt} = \frac{d}{dt}(\mathbf{q}_{1...N}, \mathbf{p}_{1...N}) = \left(\frac{\partial \mathcal{H}(X)}{\partial \mathbf{p}_{1}}, ..., \frac{\partial \mathcal{H}(X)}{\partial \mathbf{p}_{N}}, -\frac{\partial \mathcal{H}(X)}{\partial \mathbf{q}_{1}}, ..., -\frac{\partial \mathcal{H}(X)}{\partial \mathbf{q}_{N}}\right) \equiv \mathcal{V}(X)$$

• Обозначим Σ границу области Ω и \mathbf{n} — «вектор» внешней нормали к ней. Введем «вектор» плотности потока вероятности $w \cdot \mathcal{V}$ (плотность×скорость). Тогда

$$\frac{\partial P}{\partial t} = \int\limits_{\Omega} \frac{\partial w}{\partial t} dX = -\oint\limits_{\Sigma} \left(w \mathcal{V} \cdot \mathbf{n}\right) d\Sigma \qquad : \qquad \text{изменение P порождено потоком }$$
 вероятности через границу

Уравнение Лиувилля

$$\frac{\partial P}{\partial t} = \int_{\Omega} \frac{\partial w}{\partial t} dX = -\oint_{\Sigma} (w \mathcal{V} \cdot \mathbf{n}) d\Sigma = -\int_{\Omega} \operatorname{div}_{X} (w \mathcal{V}) dX$$

Последний переход объясняется формулой Остроградского-Гаусса. «Скалярное произведение» производится по всем компонентам «векторов» $\mathcal{V}=dX/dt$ и \mathbf{n} , так же и «дивергенция» берется по всем компонентам «вектора» X. По формулам векторного анализа:

$$\operatorname{div}_{\mathbf{X}}\left(w\frac{d\mathbf{X}}{dt}\right) = \left(\frac{\partial w}{\partial \mathbf{X}} \cdot \frac{d\mathbf{X}}{dt}\right) + w\underbrace{\operatorname{div}_{\mathbf{X}}\left(\mathcal{V}\right)}_{=0} = \left(\frac{\partial w}{\partial \mathbf{X}} \cdot \frac{d\mathbf{X}}{dt}\right) \qquad \text{равенство } \operatorname{div}_{\mathbf{X}}\left(\mathcal{V}\right) = 0$$
 обусловлено антисимметрией уравнений Гамильтона

В итоге, в силу произвольности выбора области Ω

$$\int\limits_{\Omega} \underbrace{\left[\frac{\partial w}{\partial t} + \left(\frac{\partial w}{\partial X} \cdot \frac{dX}{dt}\right)\right]}_{dw/dt} dX = 0 \quad \Rightarrow \quad \boxed{\frac{dw}{dt} \equiv \frac{\partial w}{\partial t} + \left(\frac{\partial w}{\partial X} \cdot \frac{dX}{dt}\right) = 0}_{\textbf{w}}$$

$$\mathbf{w} \xrightarrow{\mathbf{coxpansetcs}}_{\mathbf{b} \in \Delta \mathbf{boson}} \mathbf{n}_{\mathbf{poctpance}}$$

Осталось вспомнить, что $\frac{dX}{dt} = \frac{d}{dt}(\mathbf{q}_{1...N}, \mathbf{p}_{1...N}) = \left(\frac{\partial \mathcal{H}}{\partial \mathbf{p}_1}, ..., \frac{\partial \mathcal{H}}{\partial \mathbf{p}_N}, -\frac{\partial \mathcal{H}}{\partial \mathbf{q}_1}, ..., -\frac{\partial \mathcal{H}}{\partial \mathbf{q}_N}\right)$

Уравнение Лиувилля

$$\frac{\partial P}{\partial t} = \int_{\Omega} \frac{\partial w}{\partial t} dX = -\oint_{\Sigma} (w \mathcal{V} \cdot \mathbf{n}) d\Sigma = -\int_{\Omega} \operatorname{div}_{X} (w \mathcal{V}) dX$$

Последний переход объясняется формулой Остроградского-Гаусса. «Скалярное произведение» произ берется уравнение Лиувилля по все тетрией $\frac{\partial w}{\partial t} + \sum_{i=1}^{N} \left(\frac{\partial w}{\partial \mathbf{q}_{i}} \cdot \frac{\partial \mathcal{H}}{\partial \mathbf{p}_{i}} - \frac{\partial w}{\partial \mathbf{p}_{i}} \cdot \frac{\partial \mathcal{H}}{\partial \mathbf{q}_{i}} \right) = 0$ w сохраняется вдоль траекторий dw/dtв фазовом пространстве

Осталось вспомнить, что $\frac{dX}{dt} = \frac{d}{dt}(\mathbf{q}_{1...N}, \mathbf{p}_{1...N}) = \left(\frac{\partial \mathcal{H}}{\partial \mathbf{p}_1}, ..., \frac{\partial \mathcal{H}}{\partial \mathbf{p}_N}, -\frac{\partial \mathcal{H}}{\partial \mathbf{q}_1}, ..., -\frac{\partial \mathcal{H}}{\partial \mathbf{q}_N}\right)$

Нулевое начало термодинамики

$$\frac{\partial w}{\partial t} + \sum_{i=1}^{N} \left(\frac{\partial w}{\partial \mathbf{q}_{i}} \cdot \frac{\partial \mathcal{H}}{\partial \mathbf{p}_{i}} - \frac{\partial w}{\partial \mathbf{p}_{i}} \cdot \frac{\partial \mathcal{H}}{\partial \mathbf{q}_{i}} \right) = 0$$

- Термодинамическая система (если ее не трогать) обязательно придет в состояние, в котором ее макропараметры перестанут изменяться. Интуитивно, это соответствует распределениям с $\partial w/\partial t=0$. Но это не означает, что остановилось движение частиц в системе.
- Значит, мы ищем стационарные решения уравнения Лиувилля. Это проще, чем кажется. **Любая** функция гамильтониана является таким решением, т.е. $w(X) = f(\mathcal{H}(X))$. Доказательство:

1)
$$\frac{\partial w}{\partial \mathbf{p}_i} = f'(\mathcal{H}) \frac{\partial \mathcal{H}}{\partial \mathbf{p}_i}$$
 2) $\frac{\partial w}{\partial \mathbf{q}_i} = f'(\mathcal{H}) \frac{\partial \mathcal{H}}{\partial \mathbf{q}_i}$ 3) далее очевидно

- В нашем курсе мы рассмотрим два конкретных случая (распределения Гиббса):
 - I) Изолированная система с заданным объемом $w(X) = \frac{1}{W}\delta(\mathcal{H}(X) E_0)$
 - II) Неизолированная система с заданным объемом $w(X) = \frac{1}{Z} \exp\left[-\beta \mathcal{H}(X)\right]$

Нулевое начало термодинамики

$$\boxed{\frac{\partial w}{\partial t} + \sum_{i=1}^{N} \left(\frac{\partial w}{\partial \mathbf{q}_{i}} \cdot \frac{\partial \mathcal{H}}{\partial \mathbf{p}_{i}} - \frac{\partial w}{\partial \mathbf{p}_{i}} \cdot \frac{\partial \mathcal{H}}{\partial \mathbf{q}_{i}} \right) = 0}$$

• Термодинамическая система (если ее не трогать) обязательно придет в состояние, в котором ее макропараметры перестанут изменяться. Интуитивно, это соответствует распределениям с $\partial w/\partial t=0$. He are the consistency was consistency decreased according to

ем кажется.

ca):

• Значит, мы **Любая** функ Доказательст

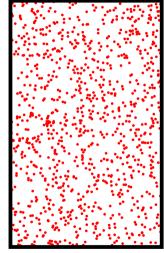
сложный вопрос на будущее

• В нашем ку

соответствует ли уравнение Лиувилля нулевому началу термодинамики?

- Изолированная система с заданным объемом
- $w(X) = \frac{1}{W}\delta(\mathcal{H}(X) E_0)$
- $w(X) = \frac{1}{Z} \exp[-\beta \mathcal{H}(X)]$ II) Неизолированная система с заданным объемом

Микроканоническое распределение Гиббса



теплоизолированные стенки энергия фиксирована

- В изолированной системе гамильтониан $\mathcal{H}(X)$ является постоянным и равен полной энергии системы E_0
- 1) Состояния X, для которых $\mathcal{H}(X) \neq E_0$, невозможны
- 2) Состояния X, для которых $\mathcal{H}(X)=E_0$, равновероятны

$$w(X) = \frac{1}{W}\delta(\mathcal{H}(X) - E_0)$$
, где $W = \int\limits_{\infty} \delta(\mathcal{H}(X) - E_0) dX$

Грубо говоря, W — число микросостояний с энергией E_0

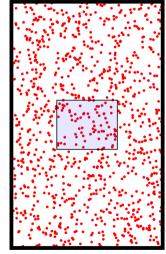
• Средние значения вычисляются легко:

$$\langle f
angle = rac{1}{W} \int\limits_{\Omega_{\Gamma}} f(X) dX$$
, где $\Omega_{E_0} = \{ orall X : \mathcal{H}(X) = E_0 \}$

• Пусть система состоит из двух слабо взаимодействующих подсистем: $X = (X_1, X_2)$

$$\mathcal{H}(X) = \mathcal{H}(X_1) + \mathcal{H}(X_2) + \mathcal{H}_{\rm B3}(X)$$
, где $\mathcal{H}_{\rm B3}(X) \ll \mathcal{H}(X_{1,2})$ тогда $\mathcal{H}(X_{1,2})$ могут быть самыми разными, и PDF у подсистем точно не δ -функции.

Каноническое распределение Гиббса



система не изолирована ее энергия не фиксирована

• В неизолированной системе гамильтониан $\mathcal{H}(X)$ не является постоянным. Можно показать, что если систему окружает большая теплоизолированная система (термостат), то

$$w(X) = \frac{1}{Z} \exp(-\beta \mathcal{H}(X)),$$
 где $Z = \int_{-\infty}^{\infty} \exp(-\beta \mathcal{H}(X)) dX$

Это уже приближение, т.к. разрешает **любые** \mathcal{H} Z нужна для расчета свободной энергии F Смысл параметра β мы раскроем в дальнейшем Он одинаков для любой системы в том же термостате

• Пусть система состоит из двух слабо взаимодействующих подсистем: $\mathcal{H}(X) = \mathcal{H}(X_1) + \mathcal{H}(X_2) + \mathcal{H}_{\rm B3}(X)$. Тогда

$$w(\underbrace{X_1, X_2}_{X}) \approx \underbrace{\frac{1}{Z_1} \exp(-\beta \mathcal{H}(X_1))}_{w(X_1)} \underbrace{\frac{1}{Z_2} \exp(-\beta \mathcal{H}(X_2))}_{w(X_2)}$$

Подсистемы с хорошей точностью статистически независимы, и каждая имеет такую же по форме PDF, как и вся система, с тем же значением параметра β .