
Лекция 11
Флуктуации в термодинамике



Равновесие и флуктуации

w(X) =
1

Z
exp

(
−H(X)

kT

)
• В состоянии т/д равновесия PDF w(X) — каноническое распределение Гиббса — уже не
зависит от времени, и все макропараметры перестают меняться. Например,

U = ⟨H⟩ = 1

Z

∫
H(X) exp

(
−H(X)

kT

)
dX =

kT 2

Z

∂Z

∂T
= const

• Но сам-то гамильтониан не фиксирован, он случаен, и его дисперсия отлична от нуля:

D[H] =
〈
H2〉− U2 =

1

Z
kT 2 ∂

∂T

kT 2 ∂Z

∂T︸ ︷︷ ︸
=ZU

− U2 = kT 2 ∂U

∂T
≡ kT 2CV ∼ U2

N︸ ︷︷ ︸
ид. газ

• Все прочие внутренние макропараметры ведут себя аналогично: они не фиксированы своими
средними значениями, флуктуируют, и масштабы флуктуаций определяются дисперсиями.

равновесные флуктуации рассчитываются при помощи условных т/д потенциалов
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Условная вероятность и условная энтропия

рассмотрим систему из N монеток с W = 2N равновероятными состояниями
введем «макропараметр» K — количество выпавших орлов

• Пусть WK — число микросостояний, соответствующих заданному макросостоянию.
Проще говоря — число различных конфигураций с точным числом орлов K.

Частная условная энтропия: S(K) = k lnWK — мера «беспорядка» при заданном условии.

• Все разрешенные комбинации равновероятны: p|K = 1/WK , поэтому перепишем S(K):

S(K) = −k ln p|K = −k

W∑
i=1

pi|K ln pi|K = −k
〈
ln p|K

〉
K

старое определение
на новых вероятностях

Последние два выражения остаются верными и в общем случае «нечестных» монеток.

• Для случая равновероятных конфигураций мы можем сделать так:

P (K) =
WK

W
=

exp(S(K)/k)

exp(S/k)
= exp

(
S(K)− S

k

)
, где S = k lnW — энтропия системы

наивероятнейшее макросостояние имеет максимальную [частн. условн.] энтропию
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энтропия наивероятнейшего состояния

наивероятнейшее K это N/2:

WN/2 =
N !

(N/2)!(N/2)!

N≫1−−−→ 2N
√

2

πN
≡ W

√
2

πN

соответствующая частная условная энтропия

S(N/2)
N≫1−−−→ N ln 2− 1

2
ln

πN

2

N≫1−−−→ S

при N ≫ 1 имеем S(N/2) ≈ S

своеобразная формулировка Закона Больших Чисел
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Флуктуации в изолированной системе

идея Эйнштейна

w(Λ⃗) = exp

(
S(Λ⃗)− S

k

)

• Перейдем от канонических переменных X к совокупности (Λ⃗,Ξ), где Λ⃗ — небольшое число
n макропараметров, а Ξ — дополняющие «6N − n» переменных, таких, что w(X) = w(Λ⃗,Ξ)

• Рассчитаем полную энтропию при помощи равенства w(Λ⃗,Ξ) = w(Λ⃗)w(Ξ|Λ⃗)

S = −k ⟨lnw⟩ = −k

∫ [
lnw(Λ⃗) + lnw(Ξ|Λ⃗)

]
w(Λ⃗)w(Ξ|Λ⃗)dΛ⃗dΞ ≡ SΛ⃗ +

∫
S(Λ⃗)w(Λ⃗)dΛ⃗︸ ︷︷ ︸

усл. энтропия

, где

(a) SΛ⃗ ≡ −k

∫
w(Λ⃗) lnw(Λ⃗)dΛ⃗ — энтропия, связанная только с «беспорядком» самих Λ⃗

(b) S(Λ⃗) ≡ −k

∫
w(Ξ|Λ⃗) lnw(Ξ|Λ⃗)dΞ — частная условная энтропия при заданных Λ⃗

равновесное макросостояние ищется через максимум част. усл. энтропии S(Λ⃗)3



Флуктуации в изолированной системе

идея Эйнштейна

w(Λ⃗) = exp

(
S(Λ⃗)− S

k

)

• В микроканоническом ансамбле w(X) ≡ w(Λ⃗,Ξ) = 1/W для всех X, таких что H(X) = E0

• Рассчитаем частную условную энтропию:

S(Λ⃗) = −k

∫
w(Ξ|Λ⃗) lnw(Ξ|Λ⃗)dΞ = −k

∫ (
lnw(X)− lnw(Λ⃗)

)
w(Ξ|Λ⃗)dΞ

• k

∫
w(Ξ|Λ⃗) lnw(Λ⃗)dΞ = k lnw(Λ⃗)

∫
w(Ξ|Λ⃗)dΞ = k lnw(Λ⃗)

• −k

∫
w(Ξ|Λ⃗) lnw(X)dΞ = k lnW

∫
H(X)=E0

w(Ξ|Λ⃗)dΞ = S

• В итоге k lnw(Λ⃗) = S(Λ⃗)− S, что преобразуется в формулу в заголовке
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Флуктуации в изолированной системе
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k
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∫
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∫
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• В итоге k lnw(Λ⃗) = S(Λ⃗)− S, что преобразуется в формулу в заголовке

микронарушения II начала

в равновесном макросостоянии S(Λ⃗) → max

но флуктуации Λ⃗ приводят к отклонению S(Λ⃗) от
максимального значения.

Это частный пример «микронарушений II начала»

характерный масштаб уменьшения ∆S порядка k
(большие — слишком маловероятны)

но такие «микронарушения» кратковременны
а в долгосрочной перспективе энтропия

все равно не убывает

4



Флуктуации в неизолированной системе

• Каноническое распределение Гиббса для X = (Λ⃗,Ξ):

w(X) =
1

Z
exp

(
−H(X)

kT

)
; lnw(X) = − lnZ − H(X)

kT

• Найдем PDF w(Λ⃗) при помощи част. усл. энтропии:

S(Λ⃗) =− k

∫ (
lnw(X)− lnw(Λ⃗)

)
w(Ξ|Λ⃗)dΞ =

= k lnZ + k lnw(Λ⃗) +
1

T

∫
H(Λ⃗,Ξ)w(Ξ|Λ⃗)dΞ︸ ︷︷ ︸

≡U(Λ⃗): усл. внутр. энергия

• Введем усл. свободную энергию F (Λ⃗) = U(Λ⃗)− TS(Λ⃗):

w(Λ⃗) =
1

Z
exp

(
−F (Λ⃗)

kT

)
= exp

(
F − F (Λ⃗)

kT

)

• Напомним, что равновесные Λ⃗ соответствуют F (Λ⃗) → min
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Флуктуации в неизолированной системе

• Флуктуируют параметры и системы, и термостата:
∆Uтерм = −∆U , ∆Vтерм = −∆V , ...

но флуктуации термостата пренебрежимы (он очень большой)
• Флуктуация энтропии термостата:

T∆Sтерм = ∆Uтерм + p∆Vтерм = −∆U − p∆V

• Совокупность «система + термостат» изолирована,
и для нее работает правило Эйнштейна:

w(∆) ∼ exp

(
∆S +∆Sтерм

k

)
= exp

(
−∆U + p∆V − T∆S

kT

)
• Оценим ∆U методом трапеций:

∆U =

откл∫
равн

TdS − pdV ≈
(
T +

∆T

2

)
∆S −

(
p +

∆p

2

)
∆V

w(∆) ∼ exp

(
−∆T∆S −∆p∆V

2kT

)
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2
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2
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−∆T∆S −∆p∆V

2kT

)

(V, T ) – представление

∆p ≈
(

∂p

∂V

)
T

∆V +

(
∂p

∂T

)
V

∆T

∆S ≈
(
∂S

∂T

)
V

∆T +

(
∂S

∂V

)
T

∆V

в итоге

w(∆V,∆T ) ∼ exp

(
−
(
∂S
∂T

)
V
(∆T )2 −

(
∂p
∂V

)
T
(∆V )2

2kT

)

∆T и ∆V — «по Гауссу» и независимы
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