
Лекция 12
Движение молекул



Случайные блуждания

точка совершает череду
перемещений случайной длины

в случайных направлениях

модель поведения как молекулы,
так и макрочастицы

в изотропной 3D–задаче〈
(∆r)2

〉
(t) = 6Dt

• Марковский процесс: каждое следующее перемещение
не зависит от предыдущих
• Самая простая модель: одномерная задача, в которой
все перемещения δx случайны, но распределены одинако-
во и независимо, причем ⟨δx⟩ = 0, D[δx] ≡ σ2

δx:

Полное перемещение: ∆x =

N∑
i=1

δxi

Его среднее: ⟨∆x⟩ =
N∑
i=1

⟨δxi⟩ = 0

Его дисперсия: D[∆x] =
〈
(∆x)2

〉
=

N∑
i=1

D[δxi] = Nσ2
δx

• Число отрезков N = t/τ0, где τ0 — среднее время меж-
ду столкновениями (время свободного пробега). Отсюда
получаем

D[∆x](t) =
σ2
δx

τ0
t ≡ 2Dt, где D =

σ2
δx

2τ0
— к-т диффузии
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Свободный пробег молекулы

vотн

2d

• Рассмотрим «среднестатистическую» молекулу, дви-
жущуюся относительно других молекул со средней ско-
ростью vотн = ⟨v⟩

√
2

• Впереди на расстоянии L = vотнT она гипотетически
заденет все молекулы, центры которых лежат ближе,
чем диаметр молекулы d к оси ее движения
• Число таких молекул N(L) = nπLd2,
где n — концентрация
• Оценим среднее время свободного пробега τ0 из того,
что N(vотнτ0) = 1:

τ0 =
1

πnvотнd2

Соответственно, средняя длина свободного пробега

λ = ⟨v⟩ τ0 =
1√

2πnd2
=

kT√
2πpd2

обратно пропорциональна концентрации2



Явления переноса
ДИФФУЗИЯ

передача количества примеси между
областями с высокой и низкой концентрацией

ТЕПЛОПРОВОДНОСТЬ

передача кинетической энергии между
областями с высокой и низкой температурой

ВЯЗКОСТЬ

передача импульса между слоями газа
(жидкости), текущими с разными скоростями

все три явления происходят из-за разности потоков переносимого параметра
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Диффузия

n

(
x− λx

2

)
n

(
x+

λx

2

)

x x+ λxx− λx

x

одномерная задача диффузии

jx = −D
∂n

∂x

3D – обобщение

j = −D gradn

уравнение Фика

• Рассмотрим в 1D-задаче воображаемую стенку с площа-
дью S. Через нее за время τ0 свободно пройдут все моле-
кулы примеси, лежащие правее и левее нее ближе, чем на
«x-длину свободного пробега» λx, и движущиеся в нуж-
ных направлениях (половина молекул летят «не туда»):

∆N→ ≈ 1

2
n

(
x− λx

2

)
Sλx и ∆N← ≈ 1

2
n

(
x+

λx

2

)
Sλx,

где n(x) — зависимость концентрации примеси от x.

• Суммарный поток частиц примеси через границу равен

jx =
∆N→ −∆N←

Sτ0
≈ −1

2

λx

τ0
· ∂n
∂x

λx = − λ2
x

2τ0︸︷︷︸
≡D

∂n

∂x

• Подставим jx в уравнение непрерывности:

∂n

∂t
+

∂jx
∂x

= 0 ⇒ ∂n

∂t
−D

∂2n

∂x2
= 0

уравнение
диффузии
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Диффузия
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∂x

λx = − λ2
x

2τ0︸︷︷︸
≡D

∂n

∂x

• Подставим jx в уравнение непрерывности:

∂n

∂t
+

∂jx
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оценки по Стратоновичу

λx = λ
⟨|vx|⟩
⟨v⟩ , где

⟨v⟩ =

∞∫
0

4πv3

(2πkT/m)3/2
exp

(
−

mv2

2kT

)
=

√
8kT

πm

⟨|vx|⟩ =

∞∫
−∞

|vx|√
2πkT/m

exp

(
−

mv2
x

2kT

)
=

√
2kT

πm

отсюда получаем

D =
λ2
x

2τ0
=

1

4
· λ2

2τ0
=

1

8
λ ⟨v⟩ = 1

8

1√
2πnгазd2

√
8kT

πm

традиционные оценки дают множитель 1/3 вместо 1/8

при существенно различных массах и размерах
молекул примеси и газа требуется коррекция «

√
2» и «d2»

cуть в том, что D ∼ (nгазd
2
)
−1
√

T/m
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Теплопроводность
газ с постоянной концентрацией n0, но неоднородно нагретый

T

(
x− λx

2

)
T

(
x+

λx

2

)

x x+ λxx− λx

x

одномерная задача

jQx = −χ
∂T

∂x

3D – обобщение

jQ = −χ gradT

• Потоки частиц влево и вправо на сей раз равны:

∆N→ = ∆N← ≡ ∆N ≈ 1

2
n0Sλx

• Но не равны потоки тепла (энергии), так как газ нагрет
неоднородно. Пусть на каждую частицу приходится энергия
E0(T ) = cV T/NA, тогда

∆Q→
←

= ∆N
cV
NA

T

(
x∓ λx

2

)
• Суммарный поток тепла равен

jQx =
∆Q→ −∆Q←

Sτ0
≈ − λ2

x

2τ0

cV n0

NA

∂T

∂x
= − λ2

x

2τ0
ρc

(уд)
V︸ ︷︷ ︸

≡χ

∂T

∂x

• Подставим jQx в ЗСЭ для wQ ≡ n0E0(T ) = ρc
(уд)
V T :

∂wQ

∂t
+

∂jQx

∂x
= 0 ⇒ ∂wQ

∂t
−χ

∂2T

∂x2
= 0

уравнение
теплопроводности5



Теплопроводность
газ с постоянной концентрацией n0, но неоднородно нагретый
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уравнение
теплопроводности

так как λ2
x/τ0 ∼ n−1

0

к-т теплопроводности χ
не зависит от концентрации

5



Вязкость
случайные блуждания между регулярными потоками

vy

(
x− λx

2

)
vy

(
x+

λx

2

)

x x+ λxx− λx

x

y

одномерная задача

dFxy

dSx
= −η

∂vy
∂x

3D – обобщение

dFij

dSi
= −η

∂vj
∂xi

• x-потоки частиц влево и вправо равны,
но не равны потоки переносимых ими y-импульсов:

∆N→ = ∆N← ≡ ∆N ≈ 1

2
n0Sλx

∆py→←
= ∆N ·m0vy

(
x∓ λx

2

)
• Суммарный поток y-импульса равен

(jpy)x =
∆py→ −∆py←

Sτ0
≡ dFxy

dS
≈ − λ2

x

2τ0
ρ︸ ︷︷ ︸

≡η

∂vy
∂x

это y-компонента силы вязкого трения Fx, действующая
на единицу площадки Sx, ортогональной оси Ox.

• Коэффициент динамической вязкости η
в газах не зависит от концентрации, и пропорционален
коэффициенту теплопроводности: χ = c

(уд)
V η6



Броуновское движение

• инородные макрочастицы
размером 103 − 105dмол

• практически не взаимодей-
ствуют друг с другом

• двигаются хаотически из-за
многочисленных соударений с
молекулами

• Мелкие частицы в жидкости или газе испытывают за-
метное влияние от случайных соударений с молекулами,
приводящее к их случайному блужданию —
броуновскому движению (1827)

• Сами молекулы недоступны визуальному наблюдению,
но, наблюдая за движением броуновских частиц,
возможно оценить число молекул в единичном объеме

ТЕОРИЯ ЭЙНШТЕЙНА-СМОЛУХОВСКОГО

• К-т вязкого трения сферической частицы радиуса r0,
согласно уравнениям классической гидродинамики

γ ≡ Fтр/v = 6πηr0

• Случайное блуждание броуновской частицы и вязкость
вещества имеют одну и ту же молекулярную природу.
К-т диффузии случайного блуждания равен

D = RT/γNA

значение R было измерено
после договоренности,

что 1 моль ≡ 2 грамма H27
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• К-т вязкого трения сферической частицы радиуса r0,
согласно уравнениям классической гидродинамики

γ ≡ Fтр/v = 6πηr0

• Случайное блуждание броуновской частицы и вязкость
вещества имеют одну и ту же молекулярную природу.
К-т диффузии случайного блуждания равен

D = RT/γNA

значение R было измерено
после договоренности,

что 1 моль ≡ 2 грамма H2

а при чём здесь диффузия?

стохастическое диф. ур-е Ланжевена
mr̈ = F− γv +R,

где F — регулярная сила, R — случайная

можно показать, что〈
|ṙ|2

〉
(t) → const ≡ 3RT

mNA
и
〈
|r|2

〉
(t) = 6

RT

γNA
t

вместо этого можно рассматривать уравнение
для PDF координат броуновской частицы w(r, t):

(уравнение Эйнштейна-Фоккера-Планка)

∂w

∂t
− RT

γNA
∆w +

∇(Fw)

γ
= 0

при F = 0 получаем уравнение «диффузии» для w(r, t)
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Опыты Перрена

мельчайшие шарики,
взвешенные в глицерине

• И Эйнштейн (1905), и Перрен (1908) были убеждены, что тер-
модинамические законы справедливы для молекул любых раз-
меров, и даже не молекул вообще.
• Для проверки теории Эйнштейна, Перрен изготовил мельчай-
шие (0.2–5 мкм) шарики гуммигута (особой древесной смолы).
Несколько месяцев ушло на центрифугирование шариков и их
разделение по размерам.
• Перрен наблюдал хаотичное движение шариков, фокусируясь
на различные горизонтальные слои. Удалось подтвердить, что
средний квадрат смещения линейно растет со временем. Изме-
ренный таким образом коэффициент диффузии позволил весь-
ма точно рассчитать число Авогадро:

NA =
RT

γD
=

RT

6πηr0D
≈ 70.5× 1022 © J.B. Perrin

• Перрен также измерял концентрации шариков на разных вы-
сотах, и гипотеза о применимости распределения Больцмана
привела к схожим оценкам.
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Опыты Перрена

опыты Перрена стали доказательством реальности молекул
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