
Лекция 8
Энергия и температура



Распределение Максвелла-Больцмана
• Идеальный одноатомный газ представляет собой набор N точечных невзаимодействующих
одинаковых частиц массой m, помещенных во внешнее поле с потенциальной энергией Π.
Гамильтониан такой системы равен

H =

N∑
i=1

|pi|2

2m
+

N∑
i=1

Π(ri), где ri — координаты, а pi = mvi — импульс i-й частицы.

• Каноническое распределение Гиббса в этом случае легко факторизуется:

w(r...,p...) =
1

Z

N∏
i=1

exp

(
−β|p2

i |
2m

)
︸ ︷︷ ︸

∼w(pi)

exp (−βΠ(ri))︸ ︷︷ ︸
∼w(ri)

да, β ≡ 1

kT
, но это чуть позже

1) все pi распределены одинаково и независимо

w(pi) =
1

ZK
exp

(
−β|pi|2

2m

)
(Максвелла)

2) все ri распределены одинаково и независимо

w(ri) =
1

ZΠ
exp (−βΠ(ri)) (Больцмана)
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Все выглядит красиво. Но за красотой
скрывается подвох. Частицы не взаимо-
действуют между собой. Если Π = 0, то
dpi/dt = 0. Как тогда выполнится нуле-
вое начало? Как установится равновес-
ное распределение?
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Достигнем ли равновесия?
Приготовим состояние X0, в котором все частицы

летят в одну сторону с одной скоростью. Что с ним будет?

a) Абсолютно свободные частицы: Ha =
∑
i

|pi|2/2m

Частицы так и будут лететь, и распределения Гиббса не установятся.

b) Частицы в сосуде с абсолютно жесткими стенками: H = Ha +
∑
i

Π(ri)

Такие стенки описываются потенциальной энергией Π(r), равной 0 внутри сосуда и +∞
вне его (барьер). Cоударения с ними не меняют модули |pi|. То есть направления скоростей
«размажутся», а их величины — нет. Это тоже далеко от распределения Гиббса.

c) Межчастичное столкновительное упругое взаимодействие: H = Hb +
∑
{ij}

Φ(|ri − rj |).

Частицы не взаимодействуют на расстоянии, но не могут приблизиться друг к другу
больше, чем на d. Это описывается потенциальной энергией взаимодействия:

Φ(|ri − rj |) =

{
0, |ri − rj | > d

+∞, |ri − rj | ≤ d

При столкновении энергии частиц изменяются.
В итоге не сохраняются величины их скоростей
и распределения Гиббса могут быть достигнуты.2
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Приготовим состояние X0, в котором все частицы

летят в одну сторону с одной скоростью. Что с ним будет?

a) Абсолютно свободные частицы: Ha =
∑
i

|pi|2/2m

Частицы так и будут лететь, и распределения Гиббса не установятся.

b) Частицы в сосуде с абсолютно жесткими стенками: H = Ha +
∑
i

Π(ri)

Такие стенки описываются потенциальной энергией Π(r), равной 0 внутри сосуда и +∞
вне его (барьер). Cоударения с ними не меняют модули |pi|. То есть направления скоростей
«размажутся», а их величины — нет. Это тоже далеко от распределения Гиббса.
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∑
{ij}

Φ(|ri − rj |).

Частицы не взаимодействуют на расстоянии, но не могут приблизиться друг к другу
больше, чем на d. Это описывается потенциальной энергией взаимодействия:

Φ(|ri − rj |) =

{
0, |ri − rj | > d

+∞, |ri − rj | ≤ d

При столкновении энергии частиц изменяются.
В итоге не сохраняются величины их скоростей
и распределения Гиббса могут быть достигнуты.

так что там с факторизацией?

модель абсолютно упругих шариков

Φ(|ri − rj |) =

{
0, |ri − rj | > d

+∞, |ri − rj | ≤ d

просто ограничивает возможные ri,
но не влияет на значение гамильтониана

H =

N∑
i=1

|pi|2

2m
+

N∑
i=1

Π(ri)

факторизация w(H(X)) допустима,
если «занятый» объем V ′ ∼ Nd3 ≪ V
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Максвелл в замкнутом сосуде
В теплоизолированном сосуде находятся N точечных частиц с массой m.

Все столкновения упруги. Какое распределение установится?

Микроканоническое! Все разрешенные состояния с энергией E0

равновероятны: расстояние между частицами больше d и
N∑
i=1

m|vi|2

2
= E0, и все наборы (v1, ...,vN ) равновероятны.

Хорошо. А как распределена какая-нибудь проекция какой-нибудь
скорости? Например, чему равно w(v1x)?

• У нас есть 3N случайных величин со связью v21x + v21y + v21z + ... = 2E0/m ≡ V2.
• Совокупная PDF всех проекций всех скоростей

w(v1, ...vN ) =
1

V3N−1S3N
, где S3N — «площадь» единичной гиперсферы в 3N -D.

• Маргинальная PDF вычисляется стандартно (через гиперсферические координаты):

w(v1x) =
1

V3N−1S3N

∫
гсф

dv1ydv1z... =
Γ(3N/2)

V
√
πΓ((3N − 1)/2)

(
1− v21x

V2

) 3
2
(N−1)
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при N → ∞

Γ

(
3N

2

)
: Γ

(
3N

2
− 1

2

)
→

√
3N

2(
1− v21x

V2

) 3
2
(N−1)

→ exp

(
− v21x
2V2/3N

)
в итоге

w(v1x) →
1√

2πV2/3N
exp

(
− v21x
2V2/3N

)
≡ N

(
0,

V2

3N

)
это распределение Максвелла!

β−1 =
mV2

3N
≡ 1

3
m

〈
v2
〉
=

p

n
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β-параметр как абсолютная температура
• Возьмем две системы «1» и «2», изначально изолирован-
ные. В каждой из их достаточно малых подсистем устано-
вится каноническое распределение. Для подсистем первой
системы β-параметры одинаковы, и для подсистем второй
— тоже, но между собой они могут быть различны.
• Если между системой «1» и «2» есть даже малое взаимо-
действие, это уже можно рассматривать как единую систему
«1+2». Энергии систем «1» и «2» не будут сохраняться по от-
дельности, и со временем микроканоническое распределение
установится в системе «1+2». Теперь уже для любой малой
подсистемы «1+2» β-параметры будут одинаковы.
Напоминает выравнивание температур при контакте

• β-параметры одинаковы для любой подсистемы термостата
• β-параметры выравниваются при взаимодействии термостатов
• Газовые законы дают p = nkT , а статистика: p = n/β

Значит β ≡ 1

kT
, а каноническое распределение w(X) =

1

Z
exp

(
−H(X)

kT

)
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Теорема о равнораспределении

• Для распределения Максвелла ⟨K⟩ =
〈
mv2/2

〉
= 3 · kT/2

• Для барометрического распределения Больцмана ⟨Π⟩ = ⟨mgz⟩ = kT

• Все это — отголоски теоремы, справедливой для канонического распределения Гиббса:

Если w(X) =
1

Z
exp

(
−H(X)

kT

)
, то

〈
ζa

∂H
∂ζb

〉
= kTδab ∀(ζa, ζb) ∈ X

Доказательство:
1) Интегрируем сначала по dζb, а потом по остальным d{X\ζb}〈

ζa
∂H
∂ζb

〉
=

1

Z

∫
∞

d{X\ζb}
∞∫

−∞

ζa
∂H
∂ζb

exp

(
− H
kT

)
dζb, • = −kT

∂

∂ζb

(
exp

(
− H
kT

))
2) Интегрируем по частям, учитывая, что d(ζa) = δabdζb〈

ζa
∂H
∂ζb

〉
=

kT

Z

∫
∞

d{X\ζb}

δab

∞∫
−∞

exp

(
− H
kT

)
dζb − ζa exp

(
− H
kT

)∣∣∣∣ζb=∞

ζb=−∞


После интегрирования первое слагаемое дает kTδab из-за условия нормировки
«Второе слагаемое зануляется, т.к. значение ⟨ζa⟩ не бесконечно» © Стратонович-Полякова5



Расчет средней энергии ⟨H⟩
〈
ζa

∂H
∂ζb

〉
= kTδab

• Пусть H(X) = αζn +H(X\ζ). Иными словами, есть степень свободы ζ, входящая в гамиль-
тониан, как степенная функция. Тогда ⟨H(X)⟩ = ⟨αζn⟩+ ⟨H(X\ζ)⟩. Вычислим ⟨αζn⟩:

⟨αζn⟩ =
1

n

〈
ζ · nαζn−1〉 =

1

n

〈
ζ
∂H
∂ζ

〉
=

kT

n

• Говорят, что на каждую степень свободы n-го порядка приходится средняя энергия kT/n.
Это утверждение тоже называется теоремой о равнораспределении энергии.

• Аналогичное утверждение верно, если H(X) = Q
(
ζ⃗
)
+H

(
X\ ζ⃗

)
, где ζ⃗ = (ζ1, ...ζl) и

Q
(
ζ⃗
)
=

∑
(i1,...,il)

αi1,...,il ζi1 ...ζil︸ ︷︷ ︸
n сомнож.

— n-форма над ζ⃗. В этом случае
〈
Q
(
ζ⃗
)〉

= l
kT

n

Пример: кинетическая энергия — квадратичная форма над обобщ. импульсами.

Поэтому ⟨K⟩ = fp
2
kT , где fp — полное число обобщенных импульсов.

• Среднее значение ⟨H⟩ это и есть внутренняя энергия U (но есть нюансы).
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Так ли универсальна эта теорема?
z

0

H ≪ kT

mg

• Газ в комнате стратифицирован «по Больцману»,

но из-за наличия потолка ⟨mgz⟩ ≈ mgH

2
≪ kT

• При «доказательстве» теоремы о равнораспределении
возникнут ограничения на ОДЗ координаты z:〈

z
∂H
∂z

〉
=

kT

Z

{
Z − z exp

(
−mgz

kT

)∣∣∣z=H

z=0

}
• Координаты не должны быть слишком ограничены

pi

w(pi)

−plim −plim

• Если для i-й степени свободы параметр инерции µi очень
мал, «максвелловская» гауссиана w(pi) очень широка:

w(pi) ∼ exp

(
− p2i
2µikT

)
• Максимальное значение plim ограничено полной энергией
всей системы. В нашем случае w(±plim) не успевает убывать
до 0. Это нарушает приближение о «бесконечных» пределах
интегрирования.
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