
Лекция 9
Две энтропии



Термодинамические параметры

ВНУТРЕННИЕ

Все канонические переменные X, любые
функции от них, а также средние значе-
ния этих функций

ВНЕШНИЕ

Не входящие в X переменные, от которых
тем не менее зависит или гамильтониан,
или плотность распределения w(X)

Статус параметра в разных задачах может быть разным!
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Внешний или внутренний?
поршень подвижен

M

S

H = Hгаз(X, zпор) + p2пор/2M +Mgzпор

Объем V = Szпор — внутренний параметр,
так является функцией обобщенной коор-
динаты zпор.

поршень управляем

S

H = Hгаз(X; zпор)

Объем V = Szпор — внешний параметр,
так как он задает границы сосуда, то есть
барьер потенциальной энергии.
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Внешний или внутренний?

канонический ансамбль микроканонический ансамбль

Гамильтониан H(X) — бесспорно внутрен-
ний параметр, функция всех обобщенных
координат. U = ⟨H⟩ — тоже.

Распределение w(X) ∼ δ(H(X)−E0) зави-
сит от полной энергии системы E0. Здесь
она — внешний параметр!
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Внешний или внутренний?

канонический ансамбль микроканонический ансамбль

Гамильтониан H(X) — бесспорно внутрен-
ний параметр, функция всех обобщенных
координат. U = ⟨H⟩ — тоже.

Распределение w(X) ∼ δ(H(X)−E0) зави-
сит от полной энергии системы E0. Здесь
она — внешний параметр!

Единственный параметр, который однозначно внешний,
это абсолютная температура T

Температура не может быть канонической переменной
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I начало термодинамики: микроуровень

• Рассмотрим систему с гамильтонианом H(X; λ⃗), где λ⃗ = (λ1, ...λn) — набор n внешних пара-
метров без температуры. Рассчитаем дифференциал внутренней энергии dU = d ⟨H⟩:

dU = d

∫
H(X; λ⃗)w(X;T, λ⃗)dX =

∫ (
∂H
∂λ⃗

· dλ⃗
)
wdX +

∫
H

∂w

∂T
dT︸ ︷︷ ︸

≡δTw

+
∂w

∂λ⃗
· dλ⃗︸ ︷︷ ︸

≡δλw

 dX

1) В первом интеграле ∂H/∂λi ≡ −Λ̃i(X; λ⃗) имеют смысл обобщенных сил. Они усредняются.
2) Во втором интеграле H усредняется с «PDF» (δTw + δλw), здесь δ ≡ dпри фиксированных X

• Обозначим средние обобщенные силы Λi =
〈
Λ̃i

〉
и получим I начало термодинамики:

dU = −Λ⃗ · dλ⃗+

∫
H(X; λ⃗) (δTw + δλw)︸ ︷︷ ︸

δw

dX сравни с dU = −δA+ δQ

1) Работа системы δA = Λ⃗ · dλ⃗ — изменение энергии из-за вариации внешних параметров.

2) Переданная теплота δQ ≡
∫

HδwdX, не равна нулю при dλ⃗ = 0, тк δTw ̸= 0.
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Сопряженные параметры

dU = −Λ⃗ · dλ⃗+

∫
H(X, λ⃗)δwdX

• Произведение любого внешнего параметра λi на соответствующую обобщенную силу Λi

имеет размерность энергии. Такие параметры называют сопряженными.
• Мы можем легко «поменять местами» λi и Λi, введя U ′ = U + Λiλi:

dU ′ = δQ− ...− Λidλi + d(Λiλi) = δQ− ...+ λidΛi

Стратонович/Полякова называют это «различными способами определения внутренней энер-
гии» (U ′ вместо U). Мы ранее называли это «новыми термодинамическими потенциалами».

Например, H = U + pV ⇒

{
dU = δQ− p dV, V — внешний, p — внутренний
dH = δQ+ V dp, p — внешний, V — внутренний

какой внутренний параметр
сопряжен абсолютной температуре T?
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Энтропия Больцмана
рассматриваем дискретные системы

1) Для случайных систем энтропия — мера хаоса и порядка со свойством аддитивности.
Объединение двух независимых систем с энтропиями S1 и S2 имеет энтропию S1 + S2.
2) «Беспорядочность» системы связана с количеством ее возможных состояний.
• Рассмотрим две независимые системы с равновероятными состояниями:

система-1
W1 состояний
энтропия S1

система-2
W2 состояний
энтропия S2

+

W1W2 состояний, энтропия S1 + S2

определим энтропию

S = k logW

выбор k зависит от системы единиц

Определение S = k logW Людвиг Больцман ввел для системы, в которой все микрососто-
яния равновероятны. Позже, Джозайя Гиббс обобщил идеи Больцмана для случая произ-
вольных случайных систем.
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Энтропия Больцмана и Гиббса
рассмотрим систему из N монеток

• В системе возможны W = 2N микросостояний. Энтропия равна S = k logW = kN log 2.
• Все комбинации монеток равновероятны: p = 1/W , поэтому энтропию Больцмана можно
переписать в виде

S = k logW = −k log p

• Если монетки «нечестные», микросостояния будут иметь разные вероятности pi.
Джозайя Гиббс обощил определение Больцмана для этого случая:

S = −k

W∑
i=1

pi log pi ≡ −k ⟨log p⟩, в любом случае S ≥ 0

1) Если все pi, кроме одной, равны нулю, то S = 0. Это идеальный порядок.
2) Значение S = k logW — максимально возможное! Это идеальный беспорядок.

рост энтропии в необратимых процессах
соответствует росту потенциального беспорядка
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энтропия Гиббса для непрерывных величин

S = −k ⟨logw⟩ = −k

∫
∞

wX logwXdX
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They are the same entropy

8



Энтропия Клаузиуса и Энтропия Гиббса

приращение энтропии Клаузиуса:

dS(1) =
δQ

T

приращение энтропии Гиббса:

dS(2) = d ⟨−k lnw⟩

• Вычислим dS(2) для канонического распределения w(X;T, λ⃗) = Z−1 exp(−H(X, λ⃗)/kT ):

dS(2) = −kd

∫
w(X;T, λ⃗) ln

(
w(X;T, λ⃗)

)
dX = −k

∫
dXδw lnw − k

∫
δwdX =

= k(lnZ − 1)

∫
δwdX +

1

T

∫
HδwdX = 0 +

δQ

T

• Первый интеграл зануляется из-за условия нормировки:∫
w(X;T, λ⃗)dX = 1 ⇒ d

∫
w(X;T, λ⃗)dX =

∫
δwdX = 0.

dS(1) = dS(2)

равенство остается верным
и для прочих равновесных распределений
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∫
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равенство остается верным
и для прочих равновесных распределений

статистическая формула свидетельствует,
что dS — полный дифференциал

внутреннего параметра

термодинамика — статфизика

S = S(1) = S(2) = ⟨−k lnw⟩+ S0

все еще неясно, как задать S0
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