
Лекция 13
Второе начало термодинамики



Зернение фазового пространства

фазовое пространство зернится
на ячейки «объемом» ∆Ω

• Предположим, мы зафиксировали начальное состояние
системы X0 с абсолютной точностью. Тогда PDF равна

w(X) = δ(X −X0)

Не пытайтесь энтропию такого состояния

• Введем зернение фазового пространства: некую точность,
с которой мы фиксируем состояние X. Тогда максимально
локализованное состояние задается δ-подобной PDF:

w(X) =

{
1/∆Ω, X«в ячейке»
0, X«вне ячейки»

• Его энтропия, минимальная из допустимых, равна

Smin = −k

∫
∆Ω

dX

∆Ω
ln

1

∆Ω
= k ln∆Ω

• Сдвинем начало отсчета энтропии, чтобы Smin → 0:

S = −k

∫
∞

wX lnwXdX − Smin = −k

∫
∞

wX ln(wX∆Ω)dX ≡ −k ⟨ln (w∆Ω)⟩
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Неопределенность Гейзенберга
Нельзя абсолютно точно одновременно зафиксировать

значения всех канонических переменных X

Ω

• Квантовая неопределенность Гейзенберга диктует
минимальное зернение для системы точечных частиц:
∆Ω = h3N , где h = 6.6 · 10−34 Дж·c — постоянная Планка.
• В квантовой физике частицы неразличимы, их переста-
новка не добавлает беспорядка. В итоге, число различных
микросостояний в области Ω может быть оценено, как

WΩ =
1

N !

∫
Ω

dX

h3N

• Скорректируем определения энтропии в соответствии с этими замечаниями:

S = k lnWΩ S = −k

∫
wX ln

(
wXh3NN !

)
dX = −k

〈
ln
(
wh3NN !

)〉
квазиклассическое

приближение

множитель N ! позволяет корректно
вычислять зависимость энтропии от числа частиц2



Энтропия идеального газа

S =
〈
−k ln

(
wh3NN !

)〉
• Просто газ в сосуде объемом V , без потенциальной энергии:

w(X) =
1

Z

N∏
i=1

exp

(
− |pi|2

2mkT

)
⇒ lnw = − lnZ −

N∑
i=1

|pi|2

2mkT

• Средний логарифм w вычисляется элементарно:
⟨−k lnw⟩ = k(lnZ + 1.5N)

• Нормировочный к-т Z = V N × нормировочный к-т «гауссов»:
Z = V N (2πmkT )3N/2

• Соберем все вместе:

S = kN

(
3

2
lnT + lnV − lnN

)
+Ns0

Мы получили знакомую формулу для энтропии,
но с дополнительным учетом зависимости от N
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«Объяснение» парадокса Гиббса
S = kN (1.5 lnT + lnV − lnN) +Ns0

N1 N2

V1 V2

Теплоизолированный сосуд разделен на две части.
В каждой части находится один и тот же газ, причем
концентрации N1/V1 = N2/V2 ≡ n. Перегородку убирают.
Изменится ли энтропия?
1) объем каждой порции возрастет, а значит

∆S1 = kN1 ln

(
1 +

V2

V1

)
и ∆S2 = kN2 ln

(
1 +

V1

V2

)
но, как мы знаем, это неправильно

2) Вычислим энтропии каждой порции ДО, а затем всей системы ПОСЛЕ
S1 = kN1 (1.5 lnT − lnn) +N1s0

S2 = kN2 (1.5 lnT − lnn) +N2s0

S1+2 = k(N1 +N2) (1.5 lnT − lnn) + (N1 +N2)s0 = S1 + S2

yра, мы построили энтропию со свойством аддитивности
но настоящие проблемы начинаются с определением «различимости» газов
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Энтропия Гиббса и уравнение Лиувилля
пусть начальное состояние системы известно абсолютно точно

развитие системы абсолютно предсказуемо:

w(X, t = 0) = δ(X −X0) ⇒ w(X, t) = δ(X −Xs(t))

где Xs(t) — решение ур-й Гамильтона с нач. усл. Xs(0) = X0

этот факт более чем очевиден,
но и уравнение Лиувилля dw/dt = 0 даёт тот же результат

5



Энтропия Гиббса и уравнение Лиувилля
пусть начальное состояние системы равновероятно выбирается

из набора W абсолютно точно известных состояний

начальная неопределенность сохраняется:

каждый «вариант» развивается абсолютно предсказуемо,
в любой момент времени система равновероятно

находится в W различных состояниях

энтропия S = k lnW не увеличивается со временем
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Энтропия Гиббса и уравнение Лиувилля
пусть начальное состояние системы равновероятно распределено в области Ω

Ω

занятый фазовый объем сохраняется:

начальная w(X, t = 0) =

{
1/Vol[Ω], X ∈ Ω

0, X /∈ Ω

эти значения сохраняются вдоль траекторий в фазовом пространстве,
область Ω деформируется, но не растет! S = k lnVol[Ω] = const7



Энтропия Гиббса и уравнение Лиувилля
пусть начальное состояние системы равновероятно распределено в области Ω

Ω

занятый фазовый объем сохраняется:

начальная w(X, t = 0) =

{
1/Vol[Ω], X ∈ Ω

0, X /∈ Ω

эти значения сохраняются вдоль траекторий в фазовом пространстве,
область Ω деформируется, но не растет! S = k lnVol[Ω] = const

микроканоническое распределение
тоже не сможет установиться

если система равновероятно занимала
только часть состояний с энергией E0,

она не сможет занять все такие состояния
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Энтропия Гиббса и уравнение Лиувилля
а возрастает ли энтропия вообще?

• Энтропия Гиббса S = −k ⟨lnw⟩ = −k

∫
(w lnw)︸ ︷︷ ︸
≡f(w)

dX, просто вычислим dS/dt:

dS

dt
= −k

d

dt

∫
f(w)dX = −k

∫
df

dw

(
∂w

∂t

)
X

dX, здесь не надо дифференцировать по X(t)
только по явному t!

• Из уравнения Лиувилля
dw

dt
= 0 получаем

(
∂w

∂t

)
X

= −
N∑
i=1

(
∂w

∂pi
· ∂H
∂qi

− ∂w

∂qi
· ∂H
∂pi

)
df

dw

N∑
i=1

(
∂w

∂pi
· ∂H
∂qi

− ∂w

∂qi
· ∂H
∂pi

)
=

N∑
i=1

(
∂f

∂pi
· ∂H
∂qi

− ∂f

∂qi
· ∂H
∂pi

)

• Рассмотрим, например,
∫

∂f

∂p1x

∂H
∂q1x

dX =

∫
d{X\p1x, q1x}

∞∫
−∞

∂f

∂p1x
dp1x

︸ ︷︷ ︸
=0

∞∫
−∞

∂H
∂q1x

dq1x = 0

похоже, что нет!
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«Недостижимый» максимум

ЗАДАЧА: найти w(X), удовлетворяющую условию нормировки ⟨1⟩ = 1,
при известных значениях средней внутренней энергии ⟨H⟩ = U

и м.б. других флуктуирующих внутренних параметров
〈
Λ̃n

〉
= Λn,

максимизирующую энтропию Гиббса S = −k ⟨lnw⟩

Метод Лагранжа с множителями −kα, −kβ0, −kβn:

F = −k

∫
w lnwdX−kα

(∫
wdX − 1

)
−kβ0

(∫
wHdX − U

)
−k

∑
n

βn

(∫
wΛ̃ndX − Λn

)
δF
δw

= −k(1 + lnw)− kα− kβ0H(X)− k
∑
n

βnΛ̃n(X) = 0

lnw(X) = −(1+α)−β0H(X)−
∑
n

βnΛ̃n(X) ⇒ w(X) ∼ exp

(
−β0H(X)−

∑
n

βnΛ̃n(X)

)

канонические распределения Гиббса максимизируют энтропию
но как же они достигаются?
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Истинные и сглаженные распределения

≡

начальное распределение
(локализованное)

истинное
конечное распределение

(«размотанное»)

сглаженное
конечное распределение

(«размазанное»)

• фазовый объем не растёт, но «разматывается» на все фазовое пространство
• с учетом сглаживания, все похоже на «расплывание» начального распределения
• wист(X) ̸= wсглаж(X), но все средние значения, посчитанные по этим распределениям,
с высокой точностью совпадут
• wсглаж(X) будет совпадать со стационарным решением уравнения Лиувилля.
Распределение Гиббса, в этом смысле, установится, а энтропия — увеличится!
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