
Лекция 14
Об одной теореме



Физическая кинетика

раздел статфизики, посвященный описанию
и предсказанию свойств макроскопических систем

в неравновесных процессах

изучает эволюции функций распределения
для небольшого количества частиц,

безусловно, учитывая влияние всех остальных

используемые интегро-дифференциальные уравнения
настолько сложны, что выделены математиками

в самостоятельную область изучения
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Частичные функции распределения
PDF для всех частиц

w(r1...rN ,p1...pN , t)

• Перенормируем исходную PDF и получим N -частичную функцию распределения:

fN (r1...rN ,p1...pN , t) ≡ V Nw(r1...rN ,p1...pN , t)

с условием нормировки
∫

fN (r1...rN ,p1...pN , t)
dr1...drN

V N
dp1...dpN = 1

• Маргинализуем fN , чтобы получать s-частичные функции распределения:

fs(r1...rs,p1...ps, t) =

∫
fN (r1...rN ,p1...pN , t)

drs+1...drN
V N−s

dps+1...dpN

с условиями нормировки
∫

fs(r1...rs,p1...ps, t)
dr1...drs

V s
dp1...dps = 1

т.к. все частицы одинаковы, s-частичная функция распределения
описывает совокупную PDF любых s частиц,

необязательно с номерами 1...s
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1-частичная функция распределения

f(r,p, t) — описывает статистику любой из частиц

проинтегрируем f по r/V — получим распределение p

w(p, t) =

∫
f(r,p, t)

dr

V

проинтегрируем f по p — получим распределение r

w(r, t) =
1

V

∫
f(r,p, t)dp

концентрация n(r, t) =
N

V

∫
f(r,p, t)dp
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Цепочка уравнений ББГКИ*

уравнение Лиувилля для fN при H =

N∑
i=1

(
|pi|2

2m
+Π(ri)

)
+

∑
{ij}

Φ(rij)

∂fN
∂t

+
N∑
i=1

pi

m

∂fN
∂ri

−

∇Π(ri) +
N∑
j ̸=i

∂Φ(rij)

∂ri

 ∂fN
∂pi

 = 0

• Применим к УЛ операцию ℑ[•] ≡
∫

(•)drs+1...drN
V N−s

dps+1...dpN , чтобы получить ур-е для fs

(1) ℑ
[
∂fN
∂t

]
=

∂

∂t
ℑ[fN ] =

∂fs
∂t

(2) ℑ
[
pi

m

∂fN
∂ri

]
=

pi

m

∂fs
∂ri

, при i ≤ s или 0 при i > s

(3) ℑ
[
∇Π(ri)

∂fN
∂pi

]
= ∇Π(ri)

∂fs
∂pi

, при i ≤ s или 0 при i > s

(4) ℑ
[
∂Φ(rij)

∂ri

∂fN
∂pi

]
=

∂Φ(rij)

∂ri

∂fs
∂pi

при i, j ≤ s или 0 при i > s или...

(5) ℑ
[
∂Φ(rij)

∂ri

∂fN
∂pi

]
=

1

V

∂

∂pi

∫
∂Φ(rij)

∂ri
fs+1(r1...rs, rj ,p1...ps,pj , t)drjdpj при i ≤ s, j > s

*Боголюбова-Борна-Грина-Кирквуда-Ивона3
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(1)+(2)+(3)+(4) сократят суммирование с N до s
(5) — «новые слагаемые», пойдут в правую часть:

∂fs
∂t

+
s∑

i=1

(
∂Hs

∂pi

∂fs
∂ri

− ∂Hs

∂ri

∂fs
∂pi

)
=

=
N − s

V

s∑
i=1

∂

∂pi

∫
∂Φ(ris+1)

∂ri
fs+1(r1...rs+1,p1...ps+1, t)drs+1dps+1

где Hs =
s∑

i=1

(
|pi|2

2m
+Π(ri)

)
+

s∑
{ij}

Φ(rij) — s-частичный гамильтониан
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Уравнение для 1-частичной функции

∂f

∂t
+

p

m

∂f

∂r
− ∂Π(r)

∂r

∂f

∂p
=

N

V

∂

∂p

∫
∂Φ(|r− r2|)

∂r
f2(r, r2,p,p2, t)dr2dp2

• приближение без взаимодействия

Если в правой части Φ = 0, мы получаем переносное уравнение: значения f будут сохра-
няться вдоль траекторий и т/д равновесие не достигнется. Это мы уже проходили.

• релаксационное приближение

Мы знаем, что f должна стремиться к максвелл-больцмановскому распределению fМБ.
Если система находится «уже почти» в равновесии, мы можем искусственно создать правую
часть под наши ожидания:

∂f

∂t
+

p

m

∂f

∂r
− ∂Π(r)

∂r

∂f

∂p
= −f − fМБ

τрел
, где fМБ ∼ n(r) exp

(
−|p− p0|2

2mkT (r)

)
В этом случае (f − fМБ) ∼ exp(−t/τрел), где τрел — время релаксации

• гипотеза молекулярного хаоса (der Stosszahlansatz) © L. Boltzmann

Частицы некоррелированы до столкновения: f2(r, r2,p,p2, t) ≈ f(r,p, t)f(r2,p2, t)4



Кинетическое уравнение Больцмана

∂f

∂t
+

p

m

∂f

∂r
− ∂Π(r)

∂r

∂f

∂p
=

N

V

∫ [
f(r,p′, t)f(r,p′

2, t)− f(r,p, t)f(r,p2, t)
]
B({p},Ω)dΩdp2

• Длинный интеграл в правой части называется интеграл столкновений (∂f/∂t)ст и описы-
вает все парные столкновительные процессы: две частицы, имевшие импульсы p и p2, после
столкновения приобретают импульсы p′ и p′

2.

• Импульсы до столкновения определяют импульсы после столкновения (задача механики).
За конкретный вид преобразования отвечает функция B(p,p2,p

′,p′
2,Ω), где Ω — дополни-

тельные параметры задачи рассеяния.

ЛЕММА БОЛЬЦМАНА

существование
равновесного состояния

есть f , такая что ∂f/∂t = 0

при этом
(
∂f

∂t

)
ст

= 0

общий вид
равновесного состояния

ln f(r,p) = α(r) + β(r) · p+ γ(r)|p|2

вывод основывается на инвариантах
столкновительного процесса — импульсе и энергии

в итоге снова получаем Максвелла-Больцмана
5



H–теорема

∂f

∂t
+

p

m

∂f

∂r
− ∂Π(r)

∂r

∂f

∂p
=

N

V

∫ [
f(r,p′, t)f(r,p′

2, t)− f(r,p, t)f(r,p2, t)
]
B({p},Ω)dΩdp2

• Больцман ввёл H-функционал: H(t) =

∫
f(r,p, t) ln f(r,p, t)drdp (знакомо, да?)

• И посчитал его производную по времени:
dH

dt
=

∫
∂f

∂t
(1 + ln f)drdp =

∫
∂f

∂t
ln fdrdp

• Слагаемые в левой части кинетического уравнения не дают вклад в dH/dt, а значит

dH

dt
=

∫ (
∂f

∂t

)
ст
ln fdrdp =

N

4V

∫
(ln[ff2]− ln[f ′f ′

2])(f
′f ′

2 − ff2)BdΩdp2drdp

Здесь при последнем переходе интеграл был вычислен через все 4 разных импульса по очереди,
и введены сокращенные обозначения f ′ ≡ f(r,p′, t), f2 ≡ f(r,p2, t), f ′

2 ≡ f(r,p′
2, t)

необратимое изменение!

dH

dt
≤ 0

(т.к. ln — возрастающая функция)6



H–теорема
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H-функционал и энтропия

если считать частицы слабо коррелироваными, то

fN (r...,p..., t) ≈
N∏
i=1

f(ri,pi, t)

S = − k

V N

〈
ln

fN
V N

〉
≈ −kN

[
H

V
− lnV

]
обоснование II начала для разреженных газов (?)
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Парадокс Лошмидта
каким образом из обратимых во времени законов механики

выводится необратимость во времени чего-либо вообще?

ДЕТАЛЬНЕЕ

• если мгновенно обратить импульсы всех
молекул, не начнет ли система развивать-
ся «назад»?

• а таких анти-кинетических состояний
разве не столько же, сколько и обычных
кинетических?

• гамильтонова система вернется близко к
начальному состоянию с любой заданной
точностью (Цермело-Пуанкаре)

ОТВЕТЫ

• да, может, причем это даже будет реали-
зовано в XX веке в отдельных квантовых
системах (spin echo).
Вообще говоря, H-функционалу действи-
тельно не запрещено возрастать.

• анти-кинетические состояния крайне
неустойчивы. Малейшая ошибка, и рост H
быстро сменится обратно на уменьшение

• вернется-то вернется, но для N ∼ NA

время возврата невообразимо превышает
возраст Вселенной
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II начало имеет статистическую природу

вероятность того, что энтропия будет расти
и т/д равновесие будет достигаться

несравненно больше вероятности обратного процесса
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